Machine Learning (beginner to expert)
Self-paced videos, Lifetime access, Study material, Certification prep, Technical support, Course Completion Certificate
Uplatz
Summary
- Certificate of completion - Free
- Reed courses certificate of completion - Free
Add to basket or enquire
Overview
Uplatz offers this comprehensive course on Machine Learning. It is a self-paced course with video lectures. You will be awarded Course Completion Certificate at the end of the course.
Machine Learning provides machines with the ability to learn autonomously based on experiences, observations and analyzing patterns within a given data set without explicitly programming. When we write a program or a code for some specific purpose, we are actually writing a definite set of instructions which the machine will follow.
Whereas in machine learning, we input a data set through which the machine will learn by identifying and analyzing the patterns in the data set and learn to take decisions autonomously based on its observations and learnings from the dataset. The first step in machine learning basics is that we feed knowledge/data to the machine; this data is divided into two parts namely, training data and testing data.
In this Machine Learning Basics Course you will -
- Get introduced to the world of machine learning with some basic concepts
- Statistics, Artificial Intelligence, Deep Learning and Data mining are few of the other technical words used with machine learning
- Learn about the different types of machine learning algorithms
At the end of the course you will receive a course completion certificate issued by Uplatz.
Certificates
Certificate of completion
Digital certificate - Included
Course Completion Certificate by Uplatz
Reed courses certificate of completion
Digital certificate - Included
Will be downloadable when all lectures have been completed
Curriculum
Course media
Description
Machine Learning Basics – Course Syllabus
Introduction :
1. Getting Started with Machine Learning
2. An Introduction to Machine Learning
3. What is Machine Learning ?
4. Introduction to Data in Machine Learning
5. Demystifying Machine Learning
6. ML – Applications
7. Best Python libraries for Machine Learning
8. Artificial Intelligence | An Introduction
9. Machine Learning and Artificial Intelligence
10. Difference between Machine learning and Artificial Intelligence
11. Agents in Artificial Intelligence
12. 10 Basic Machine Learning Interview Questions
Data and It’s Processing:
1. Introduction to Data in Machine Learning
2. Understanding Data Processing
3. Python | Create Test DataSets using Sklearn
4. Python | Generate test datasets for Machine learning
5. Python | Data Preprocessing in Python
6. Data Cleansing
7. Feature Scaling – Part 1
8. Feature Scaling – Part 2
9. Python | Label Encoding of datasets
10. Python | One Hot Encoding of datasets
11. Handling Imbalanced Data with SMOTE and Near Miss Algorithm in Python
Supervised learning :
1. Getting started with Classification
2. Basic Concept of Classification
3. Types of Regression Techniques
4. Classification vs Regression
5. ML | Types of Learning – Supervised Learning
6. Multiclass classification using scikit-learn
7. Gradient Descent :
• Gradient Descent algorithm and its variants
• Stochastic Gradient Descent (SGD)
• Mini-Batch Gradient Descent with Python
• Optimization techniques for Gradient Descent
• Introduction to Momentum-based Gradient Optimizer
8. Linear Regression :
• Introduction to Linear Regression
• Gradient Descent in Linear Regression
• Mathematical explanation for Linear Regression working
• Normal Equation in Linear Regression
• Linear Regression (Python Implementation)
• Simple Linear-Regression using R
• Univariate Linear Regression in Python
• Multiple Linear Regression using Python
• Multiple Linear Regression using R
• Locally weighted Linear Regression
• Python | Linear Regression using sklearn
• Linear Regression Using Tensorflow
• A Practical approach to Simple Linear Regression using R
• Linear Regression using PyTorch
• Pyspark | Linear regression using Apache MLlib
• ML | Boston Housing Kaggle Challenge with Linear Regression
9. Python | Implementation of Polynomial Regression
10. Softmax Regression using TensorFlow
11. Logistic Regression :
• Understanding Logistic Regression
• Why Logistic Regression in Classification ?
• Logistic Regression using Python
• Cost function in Logistic Regression
• Logistic Regression using Tensorflow
12. Naive Bayes Classifiers
13. Support Vector:
• Support Vector Machines(SVMs) in Python
• SVM Hyperparameter Tuning using GridSearchCV
• Support Vector Machines(SVMs) in R
• Using SVM to perform classification on a non-linear dataset
14. Decision Tree:
• Decision Tree
• Decision Tree Regression using sklearn
• Decision Tree Introduction with example
• Decision tree implementation using Python
• Decision Tree in Software Engineering
15. Random Forest:
• Random Forest Regression in Python
• Ensemble Classifier
• Voting Classifier using Sklearn
• Bagging classifier
Who is this course for?
Everyone
Requirements
Passion to achieve your goals
Career path
- Machine Learning Associate
- Machine Learning Engineer
- Machine Learning Research Engineer
Questions and answers
Currently there are no Q&As for this course. Be the first to ask a question.
Reviews
Currently there are no reviews for this course. Be the first to leave a review.
Legal information
This course is advertised on reed.co.uk by the Course Provider, whose terms and conditions apply. Purchases are made directly from the Course Provider, and as such, content and materials are supplied by the Course Provider directly. Reed is acting as agent and not reseller in relation to this course. Reed's only responsibility is to facilitate your payment for the course. It is your responsibility to review and agree to the Course Provider's terms and conditions and satisfy yourself as to the suitability of the course you intend to purchase. Reed will not have any responsibility for the content of the course and/or associated materials.